HOM3 logo

High-Order Multiphysics Multiscale Methods

Physical models

Overview

TODOs:

Glossary

Notation

Units

Variables

Physics

Heat equation

Variables

Assumptions

Equations

Formulation

Inserting Fourier's law into the conservation of energy:

$(\overline{\rho} \overline{e})_{\overline{t}} + \overline{\nabla} \cdot \overline{\mathbf{q}} = (\overline{\rho} \overline{e})_{\overline{t}} - \overline{\nabla} \cdot \left(\overline{\lambda} \overline{\nabla} \overline{T} \right) =(\overline{\rho} \overline{e})_{\overline{t}} - \overline{\nabla} \cdot \left( \frac{\overline{\lambda}}{\overline{\rho} \overline{c}_p} \overline{\nabla} (\overline{\rho} \overline{e}) \right) = \overline{s}$

we get a conservation law for the internal energy density:

$(\overline{\rho} \overline{e})(\overline{\mathbf{x}},\overline{t})_{\overline{t}} - \overline{\nabla} \cdot ( \overline{\alpha} \overline{\nabla} (\overline{\rho} \overline{e})(\overline{\mathbf{x}},\overline{t}) ) = \overline{s}(\overline{\mathbf{x}},\overline{\rho} \overline{e},\overline{t})$

that is equivalent (dividing by the constant $\overline{\rho} \overline{c}_p $) to a conservation law for the temperature:

$\overline{T}(\overline{\mathbf{x}},\overline{t})_{\overline{t}} - \overline{\nabla} \cdot (\overline{\alpha} \overline{\nabla} \overline{T}(\overline{\mathbf{x}},\overline{t})) = \overline{s}(\overline{\mathbf{x}},\overline{T},\overline{t})$.

The conservation law for the temperature is preferred since the temperature is usually both the quantity of interest and the quantity that couples the heat conduction with other physical models.

In short notation, we write it like this: $\overline{T}_{\overline{t}} - \overline{\nabla} \cdot (\overline{\alpha} \overline{\nabla} \overline{T}) = \overline{s}$.

Non-dimensionalization

We substitute the dimensionless variables in

$\overline{T}_{\overline{t}} - \overline{\nabla} \cdot (\overline{\alpha} \overline{\nabla} \overline{T} ) = \overline{s}(\overline{T})$

resulting in

$T_t \frac{\overline{T}_\mathrm{ref} \overline{\alpha}}{\overline{L}_\mathrm{ref}^2} - \frac{1}{\overline{L}_\mathrm{ref}} \nabla \cdot ( \frac{\overline{\alpha}}{\overline{L}_\mathrm{ref}} \nabla T) \overline{T}_\mathrm{ref} = \overline{s}(T)$

which simplifies to:

$T_t - \nabla \cdot( \nabla T) = \frac{\overline{L}_\mathrm{ref}^2}{\overline{\alpha} \overline{T}_\mathrm{ref}} \overline{s}(T)$.

In the special case where $s = 0$ it reduces to $T_t - \nabla \cdot (\nabla T) = 0$.

Input variables

Output variables

Boundary conditions

Euler equations

Variables

Assumptions

Relationships

Equations

Let:

Abusing notation, the divergence-form of the Euler-eqts. is: $ \overline{\mathbf{Q}}_{\overline{t}} + \overline{\nabla} \cdot \overline{\underline{\mathbf{H}}}(\overline{\mathbf{Q}}) = 0 $.

Formulation

and the Euler-eqts. expand to:

$\begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{pmatrix}_t + \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ \rho u w \\ u (\rho E + p) \end{pmatrix}_x + \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ \rho v w \\ v (\rho E + p) \end{pmatrix}_y + \begin{pmatrix} \rho w \\ \rho u w \\ \rho v w \\ \rho w^2 + p \\ w (\rho E + p) \end{pmatrix}_z = \begin{pmatrix} 0 \\ \rho \mathbf{g} \cdot \mathbf{e}_x \\ \rho \mathbf{g} \cdot \mathbf{e}_y \\ \rho \mathbf{g} \cdot \mathbf{e}_z \\ \rho ( \mathbf{u} \cdot \mathbf{g} ) \end{pmatrix} \; \begin{bmatrix} kg \, m^{-3} \, s^{-1} \\ N \, m^{-3} \, s^{-1} \\ N \, m^{-3} \, s^{-1} \\ N \, m^{-3} \, s^{-1} \\ J \, m^{-3} \, s^{-1}] \end{bmatrix}$.

Non-dimensionalization

Note:

Mass conservation
$\frac{\overline{\rho}_0 \overline{a}_0}{\overline{L}_\mathrm{ref}}\rho_{t} + \frac{\overline{\rho}_0 \overline{a}_0}{\overline{L}_\mathrm{ref}}\nabla \cdot(\rho \mathbf{u}) = 0$

$\Leftrightarrow \rho_{t} + \nabla \cdot(\rho \mathbf{u}) = 0$.

Momentum conservation
$ \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}}(\rho \mathbf{u})_{t} + \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}} \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \underline{\mathbf{I}}) = \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}} \rho \mathbf{g} $

$ \Leftrightarrow (\rho \mathbf{u})_{t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \underline{\mathbf{I}}) = \rho \mathbf{g} $

Energy conservation
$ \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}}(\rho E)_t + \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}} \nabla \cdot ((\rho E + p)\mathbf{u}) = \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}} \rho (\mathbf{u} \cdot \mathbf{g}) $

$ \Leftrightarrow (\rho E)_t + \nabla \cdot ((\rho E + p)\mathbf{u}) = \rho (\mathbf{u} \cdot \mathbf{g}) $

Free-stream variables

Input variables

Output variables

Boundary conditions

Navier-Stokes equations (ideal gas)

Variables

Assumptions

Relationships

Equations

Let the viscous flux tensor be defined as: $ \overline{\underline{\mathbf{H}}}_\mathrm{viscous} = (0, \overline{\underline{\mathbf{\tau}}}, \overline{\underline{\mathbf{\tau}}}\overline{\mathbf{u}} + \overline{\mathbf{q}})^T $.

Abusing notation, the divergence-form of the Navier-Stokes equations is: $ \overline{\mathbf{Q}}_{\overline{t}} + \overline{\nabla} \cdot \overline{\underline{\mathbf{H}}}_\mathrm{Euler}(\overline{\mathbf{Q}}) + \overline{\nabla} \cdot \overline{\underline{\mathbf{H}}}_\mathrm{viscous}(\overline{\mathbf{Q}}) = \overline{\mathbf{s}} $.

Formulation

Non-dimensionalization

Note: - The stagnation dynamic viscosity: $ \overline{\mu}_0 = \frac{ \overline{a}_0 \overline{L}_\mathrm{ref} \overline{\rho}_0 } { \mathrm{Re}_0 } $.

Dimensionless heat flux:

To get the dimensionless heat flux:

$ \mathbf{q} = \frac{\overline{L}_\mathrm{ref}}{\overline{a}_0^2 \overline{\mu}_0} \overline{\mathbf{q}} $

we first insert Fourier's law of heat conduction $ \overline{\mathbf{q}} = - \overline{\lambda} \overline{\nabla} \overline{T} $ and the dimensionless variables $ T $ and $ \lambda $:

$ \mathbf{q} = \frac{\overline{L}_\mathrm{ref}}{\overline{a}_0^2 \overline{\mu}_0} (- \overline{\lambda} \overline{\nabla} \overline{T}) = \frac{\overline{L}_\mathrm{ref}}{\overline{a}_0^2 \overline{\mu}_0} \frac{ \overline{\lambda}_0 \overline{T}_0}{\overline{L}_\mathrm{ref}} (- \lambda \nabla T) $

The reference length $\overline{L}_\mathrm{ref}$ vanishes and we extend with $\overline{c}_{p,0}$ as follows to substitute the stagnation Prandtl number $\mathrm{Pr}_0$:

$\mathbf{q} = \frac{ \overline{\lambda}_0 \overline{T}_0 }{\overline{a}_0^2 \overline{\mu}_0 } (- \lambda \nabla T) \frac{ \overline{c}_{p,0} }{ \overline{c}_{p,0} } = \frac{\overline{T}_0 \overline{c}_{p,0}}{\overline{a}_0^2 } \frac{\overline{\lambda}_0}{\overline{\mu}_0 \overline{c}_{p,0}} (- \lambda \nabla T) = \frac{\overline{T}_0 \overline{c}_{p,0}}{\overline{a}_0^2 } \frac{1}{\mathrm{Pr}_0} (- \lambda \nabla T)$.

Now we use the definition of the speed of sound $\overline{a}_0 = \sqrt{\gamma \overline{R}_\mathrm{specific} \overline{T}_0}$ as well as the definitions of the specific gas constant $\overline{R}_\mathrm{specific} = (\gamma - 1)\overline{c}_V$ and the ratio of specific heats $\gamma = \overline{c}_p / \overline{c}_V$:

$ \mathbf{q} = \frac{\overline{T}_0 \overline{c}_{p,0}}{\overline{a}_0^2 } \left (- \frac{\lambda \nabla T}{\mathrm{Pr}_0} \right) = \frac{\overline{T}_0 \overline{c}_{p,0}}{\gamma \overline{R}_\mathrm{specific} \overline{T}_0 } \left (- \frac{\lambda \nabla T}{\mathrm{Pr}_0} \right) = \frac{\overline{c}_{p,0}}{\gamma \overline{R}_\mathrm{specific}} \left (- \frac{\lambda \nabla T}{\mathrm{Pr}_0} \right) = \frac{\overline{c}_{p,0}}{\gamma (\gamma - 1) \overline{c}_{V} } \left (- \frac{\lambda \nabla T}{\mathrm{Pr}_0} \right ) = \frac{\gamma}{\gamma (\gamma - 1)} \left (- \frac{\lambda \nabla T}{\mathrm{Pr}_0} \right ) = - \frac{\lambda \nabla T}{\mathrm{Pr}_0 (\gamma - 1)} $.

Note that since $c_{p}$ and $c_V$ are temperature independent (i.e. constants) $\gamma = c_{p,0} / c_V$.

The dimensionless heat conductivity and dynamic viscosity are related through the Prandtl number:

$ \lambda = \frac{ \overline{\lambda} }{ \overline{\lambda}_0 } = \frac{ \overline{\lambda} }{ \overline{\lambda}_0 } \frac{ \overline{\mu}_0 \overline{c}_p }{ \overline{\mu}_0 \overline{c}_p} \frac{\overline{\mu}}{\overline{\mu}} = \frac{\overline{\mu}}{\overline{\mu}_0} \frac{\mathrm{Pr}_0}{\mathrm{Pr}} = \mu \frac{\mathrm{Pr}_0}{\mathrm{Pr}} $,

and since we assume that the Prandtl number is constant (which is a fair approximation), then $\lambda(T) = \mu(T)$.

Using Sutherland's law in dimensionless form we can compute the dimensionless dynamic viscosity as follows:

$ \mu = \frac{\overline{\mu}}{\overline{\mu}_0} = T^{3/2} \frac{\overline{T_0} + \overline{S}}{\overline{T} + \overline{S}} = T^{3/2} \frac{1 + \overline{S}/\overline{T}_0}{T + \overline{S}/\overline{T}_0} $.
Dimensionless shear-stress tensor
$ \frac{\overline{\mu}_0 \overline{a}_0}{\overline{L}_\mathrm{ref}} \underline{\mathbf{\tau}} = - \frac{\overline{\mu}_0 \overline{a}_0}{\overline{L}_\mathrm{ref}} (\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - 2/3 \mu ( \nabla \cdot \mathbf{u}) \underline{\mathbf{I}}) $ $ \Leftrightarrow \underline{\mathbf{\tau}} = - (\mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - 2/3 \mu ( \nabla \cdot \mathbf{u}) \underline{\mathbf{I}}) $
Momentum conservation
$ \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}}(\rho \mathbf{u})_t + \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}} \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \underline{\mathbf{I}}) + \frac{\overline{\mu}_0 \overline{a}_0}{\overline{L}_\mathrm{ref}^2} \nabla \cdot \underline{\mathbf{\tau}} = \frac{\overline{\rho}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}} \rho \mathbf{g} $ $ \Leftrightarrow (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + p \underline{\mathbf{I}}) + \frac{1}{\mathrm{Re}_0} \nabla \cdot \underline{\mathbf{\tau}} = \rho \mathbf{g} $
Energy conservation
$ \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}}(\rho E)_t + \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}} \nabla \cdot ((\rho E + p)\mathbf{u}) + \frac{\overline{\mu}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}^2} \nabla \cdot (\underline{\mathbf{\tau}} \mathbf{u}) + \frac{\overline{\mu}_0 \overline{a}_0^2}{\overline{L}_\mathrm{ref}^2} \nabla \cdot \mathbf{q} = \frac{\overline{\rho}_0 \overline{a}_0^3}{\overline{L}_\mathrm{ref}} \rho (\mathbf{u} \cdot \mathbf{g}) $ $ \Leftrightarrow (\rho E)_t + \nabla \cdot ((\rho E + p)\mathbf{u}) + \frac{1}{\mathrm{Re}_0} \left( \nabla \cdot (\underline{\mathbf{\tau}} \mathbf{u}) + \nabla \cdot \mathbf{q} \right )= \rho (\mathbf{u} \cdot \mathbf{g}) $
Divergence form
$ \mathbf{Q}_t + \nabla \cdot \underline{\mathbf{H}}_\mathrm{Euler}(\mathbf{Q}) + \frac{1}{\mathrm{Re}_0} \nabla \cdot \underline{\mathbf{H}}_\mathrm{viscous}(\mathbf{Q}) = 0 $.

Free-stream variables

Input variables

Output variables

Boundary conditions: TODO

Coupling

Heat Conduction with Navier-Stokes (ideal gas)

Thermal diffusivity ratio

Time scaling

The ratio between the acoustic and the diffusive time is:

$ \frac{ t_\mathrm{solid} }{ t_\mathrm{fluid} } = \frac{ \overline{L}_\mathrm{ref,solid}^2 }{ \overline{\alpha}_\mathrm{solid} } \frac{ \overline{a}_{\mathrm{fluid},0} }{ \overline{L}_\mathrm{ref,fluid} } $

Substituting

$\mathrm{Re}_0 = \overline{a}_{\mathrm{fluid},0} \overline{\rho}_{\mathrm{fluid},0} \overline{L}_\mathrm{ref,fluid} / \overline{\mu}_0 $ and $ \mathrm{Pr}_0 = \overline{\mu}_0 \overline{c}_{p,\mathrm{fluid}, 0} / \overline{\lambda}_{\mathrm{fluid}, 0} $

for the stagnation speed of sound:

$ \frac{ t_\mathrm{solid} }{ t_\mathrm{fluid} } = \frac{ \overline{L}_\mathrm{ref,solid}^2 }{ \overline{\alpha}_\mathrm{solid} } \frac{ \overline{\lambda}_{\mathrm{fluid}, 0} }{ \overline{\rho}_{\mathrm{fluid},0} \overline{c}_{p,\mathrm{fluid}, 0}} \frac{ \mathrm{Re}_0 \mathrm{Pr}_0}{ \overline{L}_\mathrm{ref,fluid}^2 } $

and using the fluid's stagnation thermal diffusivity:

$ \frac{ t_\mathrm{solid} }{ t_\mathrm{fluid} } = \frac{ \overline{\alpha}_{\mathrm{fluid}, 0} }{ \overline{\alpha}_\mathrm{solid} } \frac{ \overline{L}_\mathrm{ref,solid}^2 }{ \overline{L}_\mathrm{ref,fluid}^2 } \mathrm{Re}_0 \mathrm{Pr}_0 = \frac{ \overline{L}_\mathrm{ref,solid}^2 }{ \overline{L}_\mathrm{ref,fluid}^2 } \mathrm{Tr} \mathrm{Re}_0 \mathrm{Pr}_0$ .