slice_deque

Slice Deque

crates.io version Travis build status Appveyor build status Coveralls.io code coverage Docs License

A double-ended queue that Derefs into a slice.

The double-ended queue in the standard library (VecDeque) is implemented using a growable ring buffer (0 represents uninitialized memory, and T represents one enelemnt in the queue):

// [ 0 | 0 | 0 | T | T | T | 0 ]
//               ^:head  ^:tail

When the queue grows beyond the end of the allocated buffer, its tail wraps around:

// [ T | T | 0 | T | T | T | T ]
//       ^:tail  ^:head

As a consequence, VecDeque cannot Deref into a slice, since its elements do not, in general, occupy a contiguous memory region. This complicates the implementation and its interface (for example, there is no as_slice method - the as_slices method returns a pair of slices) and has negative performance consequences (e.g. need to account for wrap around while iterating over the elements).

This crates provides SliceDeque, a double-ended queue implemented with a growable virtual ring-buffer.

A virtual ring-buffer implementation is very similar to the one used in VecDeque. The main difference is that a virtual ring-buffer maps two adjacent regions of virtual memory to the same region of physical memory:

// Virtual memory:
//
//  __________region_0_________ __________region_1_________
// [ 0 | 0 | 0 | T | T | T | 0 | 0 | 0 | 0 | T | T | T | 0 ]
//               ^:head  ^:tail
//
// Physical memory:
//
// [ 0 | 0 | 0 | T | T | T | 0 ]
//               ^:head  ^:tail

That is, both the virtual memory regions 0 and 1 above (top) map to the same physical memory (bottom). Just like VecDeque, when the queue grows beyond the end of the allocated physical memory region, the queue wraps around, and new elements continue to be appended at the beginning of the queue. However, because SliceDeque maps the physical memory to two adjacent memory regions, in virtual memory space the queue maintais the ilusion of a contiguous memory layout:

// Virtual memory:
//
//  __________region_0_________ __________region_1_________
// [ T | T | 0 | T | T | T | T | T | T | 0 | T | T | T | T ]
//               ^:head              ^:tail
//
// Physical memory:
//
// [ T | T | 0 | T | T | T | T ]
//       ^:tail  ^:head

Since processes in many Operating Systems only deal with virtual memory addresses, leaving the mapping to physical memory to the CPU Memory Management Unit (MMU), SliceDeque is able to Derefs into a slice in those systems.

This simplifies SliceDeque’s API and implementation, giving it a performance advantage over VecDeque in some situations.

In general, you can think of SliceDeque as a Vec with O(1) pop_front and amortized O(1) push_front methods.

The main drawbacks of SliceDeque are:

The main advantages of SliceDeque are:

All in all, if your double-ended queues are small (smaller than a memory page) or they get resized very often, VecDeque can perform better than SliceDeque. Otherwise, SliceDeque typically performs better (see the benchmarks), but platform support and global allocator bypass are two reasons to weight in against its usage.